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ABSTRACT
Peer-to-peer protocols often take longer, are less efficient or can’t

complete lookup queries with increasing network diameter. Peers

could mitigate this by increasing their degree, i.e., their amount of

open connections, but this increases the operational cost for each

peer.

We propose a novel peer-to-peer network formation protocol

based on a game-theoretic approach, guaranteeing that diameter

and maximum degree do not surpass given thresholds throughout

the network. The game generalizes the local network formation

game with more versatile strategies and cost functions. This allows

for a trade off between operational cost and efficiency based on the

individual interest of peers.

We show that for any given diameter 𝑘 and maximum degree

𝑑 a Nash equilibrium, i.e., a graph with the desired properties,

can be reached by O(|players|2) improvement steps. We validate

the practical applicability of these theoretical results on networks

of 5–50 participants with various strategies and configurations.

The experimental results show a fast approximation of the desired

properties while taking some time to reach a stable state. We make

out several strategies with which the protocol performs well. In

particular, a stable state is found quickly when the initial network

was already close to a stable state. This property enables the efficient

dynamic treatment of the in practice often occurring scenario of

nodes joining or leaving the network.
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→ Theory and algorithms for application domains.

KEYWORDS
game theory, network formation, network protocol, peer-to-peer,

small-world

ACM Reference Format:
Julian Nickerl, David Mödinger, and Jan-Hendrik Lorenz. 2020. From Local

Network Formation Game to Peer-to-Peer Protocol . In Proceedings of ACM

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference (Conference’17). ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Peer-to-peer networks are used in many places, from classical file

sharing [7] over distributed file storage [4] to cryptocurrencies

using blockchain systems [9]. These systems run various algorithms

such as information dissemination of blockchain transactions or

lookup queries to find previously stored data [16]. The runtime,

efficiency, or even fairness and robustness [9] of these algorithms

often depends on the diameter of the network, i.e. the maximum

distance between two nodes. This so-called small-world property

is an essential goal for peer-to-peer networks.

Usually, this small-world property is only approximated, e.g., by

having long-range and short-range routing buckets in Freenet [7].

While experiments verified that this approach approximates a small-

world property, there are no guarantees. To improve the probability

of reaching a desired diameter, protocols can increase minimum

node degree, i.e. the number of connections a node creates. This

creates new problems [10], as more connections create more cost

for participating nodes.

Other attempts, such as algorithms relying on knowledge of the

full connection graph of the network, are impractical for peer-to-

peer networks, as participants can not be forced to follow central

guidance. Game-theoretic approaches that model individual best

interest behavior and incentives do not yet cover the desired sce-

nario of diameter and degree restrictions. In this paper, we propose

a novel game-theoretic approach to reach stable network config-

urations, where diameter and node degree do not surpass given

thresholds.

1.1 Contributions
As a summary, this paper will provide these contributions over the

state of the art:

(1) We provide a game-theoretic model for network formation

as a generalization of the local formation game. The game

applies to peer-to-peer networks and respects custom degree

and diameter thresholds.

(2) We show that Nash equilibria coincide with networks with

the desired properties and can be reached from all states with

a number of improvement steps quadratic in the number of

players.

(3) We provide various update strategies for a protocol that

require different amounts of information about the network.

(4) We show that our approach leads to sensible results based

on simulations of our strategies, e.g., approximations of the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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desired parameters are reached quickly, and networks close

to a stable state (after a node joining or leaving) reach a

stable state again after few steps.

1.2 Roadmap
This paper is structured in the following way: Section 2 introduces

the relevant background for this paper and work related to our

contributions. In Section 3 we describe our game-theoretic model,

which we analyze in Section 4 to show that global properties are

reached in Nash equilibria. We introduce several strategies to trans-

form the game-theoretic model into a peer-to-peer protocol and

describe them in Section 5. To evaluate the practicality of our ap-

proach, we simulate our strategies, presenting the results in Sec-

tion 6.

2 BACKGROUND AND RELATEDWORK
In this section, we discuss related approaches as well as the scenario

and background of our work.

2.1 Network Formation Games
Two prominent game-theoretic approaches to simulate the for-

mation of networks are the local and global network formation

games, by Fabrikant et al. [12] and Anshelevich et al. [2, 3] respec-

tively. Roughly summarized, in the local network formation game

by Fabrikant et al., every player is a node. A player can establish an

undirected edge between herself and any other node. The cost of

a player depends on the number of edges she establishes, and the

distance to the other nodes, which she both tries to minimize. In the

global game by Anshelevich et al., each player is associated with a

set of nodes she tries to connect. Any player can pay any amount

for any edge in the network. However, an edge is only established

once the sum of the payments reaches a threshold. In addition to

the payments for the edges, a player suffers cost if she is unable to

connect her associated nodes. For a survey of both game-theoretic

and non-game-theoretic approaches to network formation, see e.g.

[13] by Jackson. For a more recent and extensive overview, see [14]

by Jackson.

Both games, and extensions thereof (see, e.g. [6, 8, 15]), try to

simulate how networks with rational participants naturally form,

with the focus on analyzing the games’ price of anarchy. However,

the graphs representing Nash equilibria in these approaches are

usually very restricted, failing to guarantee interesting properties

of the topology. For example, most Nash equilibria in the local

network formation game are either the complete graph, the empty

graph, or trees (especially stars), with a loose upper bound on the

diameter of 2

√
𝛼 + 1, where 𝛼 is the cost for establishing an edge.

This is analyzed, e.g. by Fabrikant et al. in [12] and Albers et al. in

[1].

In this work, we are especially interested in two values: the

network’s diameter, and the nodes’ maximum degree. A lack of

guarantees on these two values can make the resulting networks

unsatisfactory for several applications. For example, Mödinger et al.

[17] propose a privacymotivated broadcast protocol for blockchains

consisting of three phases. If it could be guaranteed, that the respec-

tive network had diameter at most a given 𝑑 , the third phase could

be neglected, significantly improving the protocol’s performance.

Decker and Wattenhofer [9] explore the problem of blockchain

forks, and link their emergence, among others, to the network’s

diameter. Restricting the degree is often necessary for practical

reasons, as Dekker et al. [10] noted. Apart from physical restraints,

high degrees can lead to security and privacy issues. As a result

of these issues, the motivation for this work sharply differs from

the network formation games mentioned above. We are interested

in modeling a game that guarantees, that its Nash equilibria corre-

spond to networks with diameter at most 𝑑 , and maximum degree

at most 𝑘 , for given 𝑑 and 𝑘 .

2.2 Scenario
We assume a context close to peer-to-peer networks, where every

node, or player, acts rationally, but has selfish interests, and is not

allowed to cooperate with other players. The diameter in such

networks gives an upper bound on the time a message travels from

the source to the destination node. However, the diameter is a global

property, while the actions and interests of each player are locally

motivated.

This work generalizes the previously discussed local network

formation game by Fabrikant et al. [12] by allowing more versatile

cost functions and strategies, s.t. a state of the game is a Nash

equilibrium if and only if the corresponding network fulfills the

desired properties. The game is designed to allow the deletion of

edges without the necessity of players cooperating, which has been

an issue of previous designs, as discussed in Chapter 11 of [14] by

Jackson.

2.3 Approach in Peer-to-Peer Systems
In previous works on peer-to-peer systems, such as the work by

Zhang et al. [19], the property of network diameters is discussed

in the form of the so-called small-world property. Derived from

the Milgram experiment, it describes the desired feature of routing

messages between participants in relatively few steps, i.e., having a

small network diameter.

We examine Freenet [7] as an example of a peer-to-peer network

that tries to reach such a small-world network, but other systems

follow similar strategies. Freenet is a structured peer-to-peer net-

work and uses a circular identifier space [0, 1) for its participants
and the files stored in the system. Each node is responsible for files

with an identifier close to its node identifier, which overlap for

redundancy. When a node wants to store a file, it forwards the file

to the neighbor with the closest identifier to the file identifier.

To help this structure succeed and reach all desired nodes in a

few steps, the routing table is split into two parts. The majority

of routing entries contain short-range routes: Nodes that have

identifiers close to the nodes own id. This local clustering helps to

find the explicit close targets. The smaller part of the routing table

contains long-range entries, i.e., connections that lead to nodes far

away in the identifier space.

Empirically, it was shown that this construction exhibits small-

world properties [19], but no strong guarantees exist, and it grows

over a considerable amount of time. This system requires an identi-

fier space of a structured or semi-structured peer-to-peer network.

In our game-theoretic approach, no such identifier space or struc-

ture is required.
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3 MODEL
We base the model on the local network formation game by Fab-

rikant et al. [12], extended with different cost functions and the

possibility to reject and accept edges. In the course of this paper,

sets of the form {1, ...,𝑚} will be abbreviated by [𝑚] for any𝑚 ∈ N.
Even though we are interested in undirected graphs, the following

model is easier understood if all edges are interpreted as directed. A

previously undirected edge is then replaced by two directed edges,

guaranteeing the symmetric connection. Later on, we will see, that

all "stable" connections are symmetric, i.e., either edges exist in

both directions, or none.

Definition 3.1. A generalized local network formation game is

a tuple Γ = (𝑛, (𝑐𝑖 )𝑖∈[𝑛] ) with 𝑛 ∈ N the number of nodes of a

directed graph. Each node is a player of the game. A strategy of

player 𝑖 is a vector 𝑠𝑖 = (𝑠𝑖∼1, ..., 𝑠𝑖∼(𝑖−1) , 𝑠𝑖∼(𝑖+1) , ..., 𝑠𝑖∼𝑛), with
𝑠𝑖∼𝑗 ∈ {□, +,−,×}. The symbol □ stands for standing idle, + for

establishing a connection, − for rejecting an incoming edge, and

× for accepting an incoming edge. A state is a tuple 𝑆 = (𝑠1, ..., 𝑠𝑛)
representing strategies of each player in that state. The cost of a

player 𝑖 in a state 𝑆 is given by 𝑐𝑖 (𝑆). The cost functions 𝑐𝑖 project
from the set of states of the game to the real numbers.

The major differences to the original local network formation

game are the introduction of two new strategies, − and ×, and the

generalization of the cost functions. This generalized game can be

seen as a meta-game. Different interpretations of strategy combina-

tions and definitions of cost functions lead to vastly different games.

In the following, we introduce interpretations and definitions that

lead to a game whose Nash equilibria form graphs fulfilling the de-

sired restrictions on the diameter and the maximum degree. A Nash
equilibrium is an essential concept in game theory and describes a

state where no player can decrease her cost by changing her strat-

egy. These states are stable under the assumption of rational (the

player prefers states with low cost over states with high cost) and

selfish (the player prefers states with low cost for herself over states

with high cost for herself but low cost for others) players. Both are

reasonable assumptions in the context of peer-to-peer networks.

For more details on the game-theoretic terminology, we refer the

reader to [18] by Nisan et al.

First, we explain how different combinations of strategies trans-

late to a graph. Every node represents a player (player and node
will be used interchangeably in the rest of the work). Figure 1 il-

lustrates the resulting connection between nodes 𝑖 and 𝑗 for the

different combinations of strategies. The missing combinations are

symmetric cases of the ones shown in the figure.

We call a connection between player 𝑖 and player 𝑗 established if

there exists at least one edge between them according to Figure 1.

We say player 𝑖 establishes a connection between 𝑖 and 𝑗 if 𝑠𝑖∼𝑗 = +.
Furthermore, player 𝑖 rejects an (incoming) edge if 𝑠𝑖∼𝑗 = −, and
accepts it if 𝑠𝑖∼𝑗 = ×. We call a connection stable, if one of the

players chooses + and the other ×, or both players choose □.
Note, that rejection, i.e., choosing strategy −, only refers to the

incoming edge, not the connection as a whole. This leads to an

unintuitive interaction: Following Figure 1b), the strategy pair

(𝑠𝑖∼𝑗 , 𝑠 𝑗∼𝑖 ) = (+,□) leads to a directed edge from 𝑖 to 𝑗 . How-

ever, 𝑗 rejecting the incoming edge results in the strategy pair

a) 𝑖 𝑗

𝑠𝑖∼𝑗 , 𝑠 𝑗∼𝑖 ∈ {□,−}, or
𝑠𝑖∼𝑗 = × and 𝑠 𝑗∼𝑖 = □, or
𝑠𝑖∼𝑗 = □ and 𝑠 𝑗∼𝑖 = ×

b) 𝑖 𝑗

𝑠𝑖∼𝑗 = − and 𝑠 𝑗∼𝑖 ∈ {+,×}, or
𝑠𝑖∼𝑗 = + and 𝑠 𝑗∼𝑖 = □

c) 𝑖 𝑗

𝑠𝑖∼𝑗 , 𝑠 𝑗∼𝑖 ∈ {+,×}

Figure 1: Resulting connections for different strategy com-
binations.

(𝑠𝑖∼𝑗 , 𝑠 𝑗∼𝑖 ) = (+,−), leading to a directed edge from 𝑗 to 𝑖 while

removing the edge from 𝑖 to 𝑗 .

The properties in-degree, distance, neighborhood, and diameter

are defined as follows:

Definition 3.2. We define 𝐺Γ (𝑆) = (𝑉 , 𝐸) as the directed graph

that represents state 𝑆 of Γ according to Figure 1.

The function 𝑑𝑒𝑔𝑖 (𝑆) is the in-degree of node (or player) 𝑖 in

𝐺Γ (𝑆):
𝑑𝑒𝑔𝑖 (𝑆) = |{( 𝑗, 𝑖) ∈ 𝐸}|.

The distance 𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆) from player 𝑖 to player 𝑗 is the minimum

number of edges necessary on a path from 𝑖 to 𝑗 in𝐺Γ (𝑆). If a node
𝑗 is unreachable from 𝑖 , we agree on the distance 𝑛 from 𝑖 to 𝑗 .

The𝑚-neighborhoodN𝑚
𝑖
(𝑆) is the set of nodes with distance at

most𝑚 from 𝑖:

N𝑚
𝑖
(𝑆) = { 𝑗 | 𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆) ≤ 𝑚}.

The diameter is the smallest integer 𝑑 , such that for all players 𝑖 ,

N𝑑
𝑖
(𝑆) = 𝑉 .

Right away, there are two interesting properties to mention:

Property 1. A game Γ = (𝑛, (𝑐𝑖 )𝑖∈[𝑛] ) with its states
interpreted as defined above has the following properties:

(1) Initially establishing a connection does not increase the in-
degree of the establishing player.

(2) Rejecting an incoming edge does not decrease the distance of
the rejecting player to the other nodes.

Proof. The properties follow directly from Definition 3.2 and

the interpretation of strategy combinations from Figure 1.

(1) Player 𝑖 initially establishing a connection with 𝑗 leads to

the strategy pair (𝑠𝑖∼𝑗 , 𝑠 𝑗∼𝑖 ) = (+,□). Following Figure 1b),
this only creates a directed edge from 𝑖 to 𝑗 , not affecting the

in-degree of 𝑖 .

(2) Player 𝑖 rejecting an incoming edge leads to either (−, +)
or (−,×) or (−,−). In all cases, an outgoing edge from 𝑖 is

either preserve or did not exist in the first place. Hence, the

distance from 𝑖 to all other nodes does not decrease.
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□

The goal is now to define the cost functions, s.t. every Nash

equilibrium represents a graph with maximum diameter at most 𝑑

and maximum degree at most 𝑘 , with 𝑑 and 𝑘 as given constants.

The cost functions consist of four components, each fulfilling a

particular role:

• 𝜅𝑖 (𝑆, 𝑘) generates cost whenever the in-degree of player 𝑖 in
𝐺Γ (𝑆) is above the desired maximum degree 𝑘 .

• 𝛿𝑖 (𝑆, 𝑑) generates cost whenever there is at least one player
whose distance from 𝑖 is more than the required maximum

diameter 𝑑 .

• sat𝑖 (𝑆, 𝑘, 𝑑) is non-zero if 𝜅𝑖 (𝑆, 𝑘) = 𝛿𝑖 (𝑆, 𝑑) = 0. This indi-

cates that player 𝑖 locally fulfills the requirements.

• 𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) ensures that all Nash equilibria only have stable

connections. Additionally, the cost function links a cost of 1

to every established connection to the player establishing it.

Another important property is that 𝜁 uses the sat function to

create cost whenever a player rejects an edge even though

she locally already fulfills the required properties.

Formally, the components are defined as follows:

𝜅𝑖 (𝑆, 𝑘) :=

{
0, if 𝑑𝑒𝑔𝑖 (𝑆) ≤ 𝑘

𝑁 · 𝑑𝑒𝑔𝑖 (𝑆), else

𝛿𝑖 (𝑆, 𝑑) := 𝑁
∑

𝑗 ∈[𝑛]\N𝑑
𝑖
(𝑆)

𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆)

sat𝑖 (𝑆, 𝑘, 𝑑) :=

{
1, if 𝜅𝑖 (𝑆, 𝑘) = 𝛿𝑖 (𝑆, 𝑑) = 0

0, else

With 𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) given by the table:

𝑠𝑖∼𝑗 \ 𝑠𝑖∼𝑗 + − □ ×
+ 𝑁 𝑁 1 1

− 𝑠𝑎𝑡𝑖 (𝑆, 𝑘, 𝑑) 𝑁 𝑁 sat𝑖 (𝑆, 𝑘, 𝑑)
□ 𝑁 0 0 𝑁

× 0 𝑁 𝑁 𝑁

Here, 𝑁 is a large number. For example, 𝑁 = 𝑛2 suffices. The

final cost functions are

𝑐𝑖 (𝑆) = 𝑐
𝑘,𝑑
𝑖

(𝑆)
= 𝜅𝑖 (𝑆, 𝑘) + 𝛿𝑖 (𝑆, 𝑑) +

𝑛∑
𝑗 ∈[𝑛]\𝑖

𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) .

4 NASH EQUILIBRIA GUARANTEEING
GLOBAL PROPERTIES

As mentioned before, we are interested in undirected graphs with

maximum degree at most 𝑘 and maximum diameter at most 𝑑 .

However, the above interpretation of the generalized local network

formation game features only directed graphs. Still, we show that

if a state is a Nash equilibrium, then all connections must be stable.

Since stable connections are those where either no edge exists or

edges exist in both directions, this coincides with an undirected

graph. Additionally, the in-degree of a node in the directed graph

with only stable connections coincides with the degree of the node

in the undirected graph. Accordingly, if we speak of the degree of
a node, we typically refer to its in-degree. A Nash equilibrium is

reached when no player can decrease her cost by changing her

strategy.

Theorem 4.1. If a state 𝑆 is a Nash equilibrium of Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ),
all connections are stable.

Proof. We consider two cases. In the first, we assume, that

𝐺Γ (𝑆) fulfills the desired property.We know, that then 𝑠𝑎𝑡𝑖 (𝑆, 𝑘, 𝑑) =
1 for all players 𝑖 . This means additionally, that for every player,

the only non-zero component of the cost function is 𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑).
We can update the cost function by setting 𝑠𝑎𝑡𝑖 (𝑆, 𝑘, 𝑑) = 1.

𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) :=

𝑠𝑖∼𝑗 \ 𝑠𝑖∼𝑗 + − □ ×
+ 𝑁 𝑁 1 1

− 1 𝑁 𝑁 1

□ 𝑁 0 0 𝑁

× 0 𝑁 𝑁 𝑁

Together with 𝜁 𝑗∼𝑖 (𝑆, 𝑘, 𝑑), this cost function can be interpreted

as a two-player symmetric cost-minimization game. The game has

three pure Nash equilibria, marked in green, that exactly coincide

with the states representing stable connections. There exists a player

that can reduce her cost in any other state of the game.

In the other case,𝐺Γ (𝑆) does not fulfill the properties, i.e., there
exists a player 𝑖 with 𝑠𝑎𝑡𝑖 (𝑆, 𝑘, 𝑑) = 0. We can update 𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑)
for player 𝑖 accordingly.

𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) :=

𝑠𝑖∼𝑗 \ 𝑠𝑖∼𝑗 + − □ ×
+ 𝑁 𝑁 1 1

− 0 𝑁 𝑁 0

□ 𝑁 0 0 𝑁

× 0 𝑁 𝑁 𝑁

The new cost function defines another two-player cost-minimization

game. This game is not necessarily symmetric since 𝑠𝑎𝑡 𝑗 (𝑆, 𝑘, 𝑑)
can be either 1 or 0. However, the only Nash equilibria are again

stable states, marked in green.

Therefore, 𝑆 can only be a Nash equilibrium if all connections

are stable. □

An additional property of the two-player games used in Theorem

4.1 is that there always exists a sequence of improvement steps

leading to a stable state:

Corollary 4.2. Given a state 𝑆 of Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ), either all
connections in 𝑆 are stable or there exists a sequence of improvement
steps to a state 𝑆∗, s.t. all connections in 𝑆∗ are stable.

Using Theorem 4.1, we can ensure, that a state of the game

is a Nash equilibrium, if the respective graph fulfills the desired

restrictions on the maximum diameter and maximum degree.

Theorem 4.3. If 𝑆 is a Nash equilibrium of the game Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ),
then 𝐺Γ (𝑆) has maximum degree at most 𝑘 and diameter at most 𝑑 .

Proof. We conduct a proof by contradiction. Assume 𝑆 is a Nash

equilibrium that does not meet the diameter or degree restrictions.

Due to Theorem 4.1, we can assume that all connections in 𝐺Γ (𝑆)
are stable. We consider two cases:
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(1) There exists a node 𝑖 with in-degree above𝑘 , i.e.,𝑑𝑒𝑔𝑖 (𝑆) > 𝑘 .

Player 𝑖 can reduce her in-degree and therefore her cost by

rejecting any edge directed at her. According to Property 1,

the player reduces her cost for the in-degree, while leaving

the costs for distances unchanged.

(2) The degree of every node is at most 𝑘 . However, there exists

a tuple (𝑖, 𝑗) with 𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆) > 𝑑 . Player 𝑖 can reduce her

cost for the distances by establishing a connection to 𝑗 . Ac-

cording to Property 1, the cost for the in-degree is unaffected.

Additionally, reducing the distance reduces player 𝑖’s cost

by at least 𝑁 , while establishing an edge has cost only 1.

In all cases, we can find a player that can reduce her cost. There-

fore, 𝑆 cannot be a Nash equilibrium, and the theorem holds. □

While Theorem 4.3 shows, that every Nash equilibrium of the

game represents a graph fulfilling the desired properties, it does

not guarantee the converse.

Theorem 4.4. Given a state 𝑆 of the game Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ). If
𝐺Γ (𝑆) has maximum degree at most 𝑘 and diameter at most 𝑑 , and
all connections are stable, then 𝑆 is a Nash equilibrium.

Proof. If 𝐺Γ (𝑆) is already a graph with the desired proper-

ties, the cost functions 𝜅𝑖 (𝑆, 𝑘) = 𝛿𝑖 (𝑆, 𝑑) = 0, and therefore,

sat𝑖 (𝑆, 𝑘, 𝑑) = 1 for all players 𝑖 . The only way a player could

potentially reduce her cost is by reducing the number of edges

she establishes. According to the 𝜁𝑖∼𝑗 , this requires rejecting a

number of incoming edges, since any other approach to undo es-

tablishing the connection is linked to even higher cost. However,

since 𝑠𝑎𝑡𝑖 (𝑆) = 1, rejecting an edge has at least the same cost

in 𝜁𝑖∼𝑗 (𝑆, 𝑘, 𝑑) as maintaining the connection, i.e., the the player

cannot further reduce her cost. □

Theorems 4.3 and 4.4 form an equivalence:

Corollary 4.5. Given a state 𝑆 of the game Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ),
𝑆 is a Nash equilibrium if and only if 𝐺Γ (𝑆) has maximum degree at
most 𝑘 and diameter at most 𝑑 , and all connections are stable.

An additional direct consequence of Corollary 4.5 is the follow-

ing:

Corollary 4.6. Given 𝑛, 𝑘, and 𝑑 , the game Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] )
has at least one Nash equilibrium if and only if there exists a graph
with 𝑛 nodes, maximum degree at most 𝑘 and diameter at most 𝑑 .

So far, we have guaranteed the existence of Nash equilibria rep-

resenting graphs that satisfy the desired properties. We can fur-

thermore show, that from any state, a Nash equilibrium can be

reached by a sequence of improvement steps of quadratic length in

the number of players. However, these steps do not have to be best

responses. We accompany the steps of the upcoming proof with an

example, illustrated by Figure 2.

Theorem 4.7. Given a state 𝑆 of Γ = (𝑛, (𝑐𝑘,𝑑
𝑖

)𝑖∈[𝑛] ). If there
exists a graph with 𝑛 nodes, maximum degree at most 𝑘 and diameter
at most 𝑑 , a Nash equilibrium is reachable from 𝑆 with a sequence of
improvement steps of length O(𝑛2).

Proof. According to Corollary 4.6, there exists a Nash equilib-

rium 𝑆∗ in this game. For𝑛 = 5, 𝑘 = 2, and𝑑 = 2, this is, for example,

the graph from Figure 2a). Let 𝐸∗ be the edge set of𝐺Γ (𝑆∗). For sim-

plicity, assume that 𝐺Γ (𝑆∗) represents the only possible graph that

fulfills the properties. If a different equilibrium is reached during

the following steps, directly terminate on that equilibrium. In four

main steps, we show that we can reach a state where all established

connections are stable and correspond to the edges from 𝐸∗ and
vice versa.

(1) Reduce all degrees to at most 𝑘: According to Corollary

4.2, we can assume, that all connections are stable, or can be

made stable with a sequence of O(𝑛2) improvement steps

since every edge has to be visited at most twice.

Any player 𝑖 with 𝑑𝑒𝑔𝑖 (𝑆) > 𝑘 can reject any 𝑑𝑒𝑔𝑖 (𝑆) −
𝑘 incoming edges, thus reducing her cost. Afterward, we

"clean up" all unstable connections, s.t. both players choose

□, which is possible, again, due to Corollary 4.2. Once this is

done, we reach a state 𝑆 (1) , where all players have degree at
most 𝑘 , and again all connections are stable.

In our example, Figure 2b) is the initial graph. The degree of

nodes 𝑐 and 𝑑 is too high. In order to reduce their degrees,

𝑐 can reject the edge from 𝑒 , and 𝑑 the edges from 𝑏 and 𝑐 .

Stabilizing the connections leads to Figure 2c).

(2) Create a disconnected graph: In general, 𝐺Γ (𝑆 (1) ) does
not have diameter at most 𝑑 yet. Since all connections in

𝑆 (1) are stable, they are symmetric. Hence, there exists a pair

(𝑖, 𝑗) with 𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆 (1) ) = 𝑑𝑖𝑠𝑡 𝑗∼𝑖 (𝑆 (1) ) > 𝑑 . Clearly, 𝑠𝑖∼𝑗 =
𝑠 𝑗∼𝑖 = □, since otherwise 𝑑𝑖𝑠𝑡𝑖∼𝑗 (𝑆 (1) ) = 𝑑𝑖𝑠𝑡 𝑗∼𝑖 (𝑆 (1) ) = 1.

We set 𝑠𝑖∼𝑗 = +, and reject all incoming edges to 𝑖 , thus

reducing 𝑖’s cost (record that due to Property 1, rejecting

edges does not affect the player’s distances). However, 𝑗 can

reject all incoming edges, including the one from 𝑖 . Accord-

ing to Figure 1b), the resulting strategy combination (+,−)
between players 𝑖 and 𝑗 represents a directed edge from 𝑗 to

𝑖 . This decreases the distance from 𝑗 to 𝑖 to 1, reducing 𝑗 ’s

cost in return.

Returning to a state where all connections are stable leaves a

disconnected graph with at least three components. Players

𝑖 and 𝑗 are isolated nodes, while all other nodes are possibly

connected. We call this final state 𝑆 (2) , and 𝑉 = [𝑛]\{𝑖, 𝑗}.
In our example, we can choose nodes 𝑏 and 𝑒 as 𝑖 and 𝑗

respectively, since 𝑑𝑖𝑠𝑡𝑏∼𝑒 (𝑆 (1) ) = 𝑑𝑖𝑠𝑡𝑒∼𝑏 (𝑆 (1) ) = 5 > 2.

Player 𝑏 establishing a connection to 𝑒 creates a directed

edge from 𝑏 to 𝑒 . However, 𝑏 is already disconnected, i.e., no

edges have to be rejected by her. Node 𝑒 , on the other hand,

can reject the incoming edge from 𝑏, thus creating a directed

edge to 𝑏 herself. Simultaneously, 𝑒 can reject the incoming

edge from 𝑑 . Stabilizing the connections leads to Figure 2d).

(3) Establish connections in 𝑉 : Let A and B be the isolated

nodes from the previous step. For every node 𝑖 ∈ 𝑉 , establish

a connection to A and establish all connections that corre-

spond to edges (𝑖, 𝑗) ∈ 𝐸∗ with 𝑗 ≠ A and 𝑗 ≠ B. Reject all

incoming edges that are not in 𝐸∗. Since A was unreachable

beforehand, the total cost of 𝑖 is guaranteed to lower. Player

A, on the other hand, can now decrease her cost by rejecting

the edge from 𝑖 .

After considering every node in 𝑉 , all edges between nodes

from 𝑉 are also in 𝐸∗, and A and B remain isolated nodes.
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After returning to all stable connections, we call this state

𝑆 (3) .
In the example, consider player 𝑐 . The procedure for the

other players functions accordingly. Node 𝑐 establishes a

connection to A. Simultaneously, she can reject the incom-

ing edge from 𝑎, since (𝑎, 𝑐) is not an edge in the desired

Nash equilibrium. Additionally, she establishes a connection

to 𝑑 , which is part of the Nash equilibrium. A rejects the

edge from 𝑐 , keeping the node disconnected after stabilizing

the edges. After performing a similar procedure for the other

nodes, Figure 2e) is reached.

(4) Reconnect the graph: Finally, A can establish all its con-

nections corresponding to edges from 𝐸∗ apart from the one

to B (if it is part of 𝐸∗). Similarly, B can establish all its

connections from 𝐸∗ including the one to A if (B,A) ∈ 𝐸∗.
Accepting all incoming edges leads to state 𝑆 (4) .
In the example, player A establishes the connections to 𝑎

and 𝑐 , and similarly, B establishes the connections to 𝑎 and

𝑑 . Stabilizing all edges leads to the final graph from Figure

2f).

The established connections in 𝑆 (4) exactly correspond to the

edges from 𝐸∗. Since 𝑆∗ is a Nash equilibrium, and according to

Theorem 4.3, a graph with edges as in 𝐸∗ has maximum degree at

most 𝑘 and maximum diameter at most 𝑑 . Due to Theorem 4.4, 𝑆 (4)

is a Nash equilibrium of the game.

Each of the above phases requires O(𝑛2) improvement steps,

since every edge is visited at most a constant number of times, and

the number of edges is bounded from above by O(𝑛2). □
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Figure 2: Illustration of the proof of Theorem 4.7 for 𝑛 =

5, 𝑘 = 2, 𝑑 = 2.

An interesting property is the size of the graphs in a Nash equi-

librium. Since these states are equivalent to the possible graphs

that fulfill the desired properties concerning the maximum degree

and diameter, it suffices to analyze the size of graphs with these

properties. A simple upper bound to the number of edges of a graph

with diameter at most 𝑑 and maximum degree at most 𝑘 is𝑚 ≤ 𝑛𝑘
2
.

Based on a result by Erdős, Rényi, and Sós [11], a lower bound can

be found in Chapter 4 of [5] by Bollobás:

Theorem 4.8. ([5]) The number of edges in an undirected graph
with 𝑛 nodes, diameter at most 𝑑 , and maximum degree at most 𝑘 is
at least 𝑛 (𝑛−1) (𝑘−2)

2( (𝑘−1)𝑑−1) .

Lastly, it is not hard to see, that the game still behaves in the

intended way, if each node chooses its own maximum degree and

maximum eccentricity. This is a useful property, since, e.g. different

peers in a peer-to-peer network have access to varying qualities of

hardware, and can thus maintain different amounts of connections.

5 PRACTICALS
The previous section has introduced a game-theoretical model that,

if transferred into a network protocol, would lead to states with

beneficial properties. However, this transformation faces some hur-

dles.

An assumption in the game from the previous section is that it

is played only exactly once. The improvement steps mentioned, e.g.

in Theorem 4.7 are considerations regarding the choice of strategy

before applying them. However, the core concept of these improve-

ment steps can be used to create update rules for the protocol. Out

of the many options we have considered the following rules:

Regarding establishing a new edge (in the following also called

the add type), we considered

• bounded by degree, furthest first: Establish edges to nodes

that are too far away, until the maximum desired degree

is reached or an edge has been established to all nodes in

question. Prioritize further away nodes over closer ones.

• all: If there is an edge out of reach, establish an edge to it (if

possible).

• bounded by degree, random: Uniformly at random establish

edges to nodes that are too far away, until the maximum

desired degree is reached or an edge has been established to

all nodes in question.

Regarding rejecting an established edge (in the following also

called the delete type), we considered

• least important first: Reject connections until the maximum

desired degree is reached, prioritizing connections to nodes

that are seldom the next step on a shortest path to another

node.

• oldest first: Reject connections until the maximum desired

degree is reached, prioritizing connections that have been

established a long time ago.

• youngest first: Reject connections until the maximum desired

degree is reached, prioritizing connections that have been

established recently.

• random: Uniformly at random reject connections until the

maximum desired degree is reached.

Note, that one could think about each time choosing the actions

that would minimize the respective player’s cost regarding the

game’s rules, however finding these actions is likely to be a hard

problem [12].

Now we have some options on update rules; however it is not

clear which player should apply them. When we considered an

improvement step in the game, it always only concerned a sin-

gle player. However, it is not usual that only a single peer in a
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network may update its state. Again, we compared several differ-

ent approaches to choosing who may apply her updates (in the

following also called the choose type):
• highest cost: Choose the player with the highest cost with

respect to the game’s rules.

• highest eccentricity: Choose the player with the highest ec-

centricity.

• highest degree: Choose the player with the highest degree.

• one chosen at random: Choose a player at random, weighted

by the number of changes she would apply. A high number

of changes results in a higher chance.

• all simultaneously: All players apply their changes simulta-

neously.

Clearly, not all of the above rules can be applied directly in

a network protocol. One of the biggest issues is that of lack of

information: In the game model, complete information is assumed.

However, we are aiming for a peer-to-peer network; hence there

should not be a central agent supplying the peers with information.

The different rules presented above each require a different amount

of global information. We have listed them roughly in descending

order with respect to the required information. The less information

a rule requires, the more practical it is in a peer-to-peer network

setting. It should be noted, however, that for each approach, the

complete topology of the network remains unknown.

6 EVALUATION
The previous sections introduced a theoretical model and proposed

different approaches to a peer-to-peer network protocol. In this

section, we describe and present experiments we have conducted

to compare said approaches.

6.1 Methodology
Based on network size, desired diameter, and desired maximum de-

gree, we consider six different network configurations with five to

fifty participants. The initial networks were generated in different

ways (in the following also called the generation type). The simplest

cases are the empty and full network, where, respectively, no edges

exist at all or all edges exist. Additionally, we consider initial net-

works where the existence of each directed edge is decided based

on a small constant probability and networks in which we simulate

a participant leaving and joining again after reaching a stable state.

For this last type of network, we generate a stable network and

then remove all connections to and from a randomly chosen node.

Adding the options from the previous section (of choice of next

player, choice of which edges to establish, and choice of which

edges to reject) to network size and initial network generation

type, we total in 1440 different parameter combinations which

we exhaustively apply. Twenty runs are started with each of the

parameter combinations. The simulation is interrupted once a stable

state is reached or after a maximum of 250.000 improvement steps,

indicating problems with convergence.

6.2 Discussion of Results
The experiments yield several interesting results. A first look at the

number of instances that failed to find a solution even after 250.000

steps seemed devastating. However, we were able to make out four

strategies that lead to almost all of these fails. These strategies are

the choose types highest eccentricity and highest degree, and the

delete types least important first and youngest first. After removing

results from instances that use one of these types, only a total of

six runs failed to find a stable solution in time, compared to the

previous thousands, as visualized by Figure 3. In the following

discussion of results, these four strategies are omitted.

Figure 3: For each parameter, the number of runs
that, if that parameter was present, failed to find
a stable solution even after 250.000 steps. Af-
ter removing Choose_eccentricity, Choose_degree,
Delete_leastImportant, and Delete_youngest, only a to-
tal of six of the remaining runs failed.

Certain behaviors can be observed over almost all parameter

combinations. The network quickly reaches a state that is close

to an equilibrium but requires a longer time for final convergence.

This effect can be seen, for example, in Figure 4 and Figure 5, where

after an initial steep improvement, all strategies struggle to finish.

Still, reaching almost stable solutions very fast is already a desirable

property, especially in networks with a lot of fluctuation. Addition-

ally, especially the average distance between the participants is and

remains low almost immediately, as can be seen in Figure 6.

Lastly, some single parameters show noteworthy behavior. Ini-

tializing the network by simulating the leaving and joining of a

node finds a stable state very fast (see Figure 7), and never moves

far away from an equilibrium (see again Figure 4 or Figure 5). This

is a valuable property since it indicates a stable convergence. Also,

it enables the efficient dynamic treatment of the in practice often

occurring scenario when the network is already close to a stable

solution.

A negative mention is the add type all. Figure 8 demonstrates

that compared to the other add types, all severely struggles to

converge to an equilibrium. This is also clearly displayed in the

runtime comparison of Figure 9.

A last interesting parameter is the choose type highest cost, as
it most closely respects the underlying game, even if it may not
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Figure 4: Comparison of the development of the average de-
gree for the generation types. All strategies quickly settle on
a value close to the final result.

Figure 5: Comparison of the development of the number of
nodes that are still too far away from at least one other node
for the generation types. All strategies quickly settle on a
value close to the final result. The close to stable strategy per-
forms particularly stable.

be realistic in practice as it requires too much information. It can

be seen as a confirmation of the design of the original game, that

runs with this parameter seem to have little problem converging

(see Figure 10), and perform well with respect to the runtime (see

Figure 11).

Figure 6: Comparison of the development of the average dis-
tances for the delete types. Besides minor fluctuations, both
strategies remain stable around a small value that is close to
the final result.

Figure 7: Comparison of runtimes for the generation types.
Close to stable performs particularly well, solving most in-
stances with few steps. The other strategies perform simi-
larly.

On the negative side, the current protocol prototype suffers from

rather slow convergence, and still requires unrealistic amounts of

information. Nonetheless, these initial experiments are promising.

For most parameter combinations, the distances between the nodes

quickly decrease without drastically increasing the participants’

degrees. Generating the initial network such that it is close to an

already stable state demonstrates the stable and efficient behavior
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Figure 8: Comparison of the development of the number of
nodes that are still too far away from at least one other node
for the add types.While adding all edges quickly reduces the
amount of too far away nodes, it has severe problems in find-
ing the final solution. The other two strategies perform sim-
ilarly, quickly finding a stable solution after reducing the
number of far away nodes.

Figure 9: Comparison of runtimes for the add types. Adding
all edges struggles to find any stable solution. The other two
strategies perform similarly, solving all given instances af-
ter only about 400 steps.

of the protocol for an in practice regularly occurring scenario. It is

not unreasonable to assume that the protocol performs well with a

good choice of parameters.

Figure 10: Comparison of the development of the average
degree for the choose types. Highest cost does not seem to
have any problem finding the final stable solution.

Figure 11: Comparison of runtimes for the choose types. Let-
ting all players update simultaneously finds stable solutions
to most instances significantly faster than the other strate-
gies. However it seems to struggle with the remaining in-
stances.

7 CONCLUSION
This work introduced a novel peer-to-peer protocol dedicated to

forming and maintaining networks with a given upper bound on

diameter and maximum degree. For this purpose, we generalized

the local network formation game, allowing for more strategies and

cost functions, and used it as the basis for the protocol. We show

that the game’s Nash equilibria exactly coincide with networks with
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the desired properties. We proved, that, if at least one such Nash

equilibrium exists, it can be reached in a sequence of O(| players |2)
improvement steps. From these results follows, that reaching a Nash

equilibrium guarantees global properties, despite the players being

locally motivated and uncooperative.

The rationality and selfishness of the players allow for easy

conversion of cost-reducing strategy changes to actions in a peer-

to-peer protocol. We introduced several strategies for establishing

edges, rejecting edges, and choosing the next player to apply these

updates. The strategies require different amounts of global infor-

mation. Those that need more information tend to more closely

follow the game’s rules, while those with less information tend to

be more realistic for a practical peer-to-peer protocol.

The strategies are exhaustively tested in experiments on net-

works of five to fifty participants. The simulations show that our

approach is promising. Most strategies quickly approximate the

desired parameters; however, they can take longer to reach the

final stable result. It stands out that initializing the network close

to a stable state performs particularly well. This property enables

the efficient dynamic treatment of the in practice often occurring

scenario of nodes joining or leaving the network.

These results show the applicability of our approach for real

networks, guaranteeing the desired properties for all stable net-

works. This is unlike previous methods which only approximate

these concepts and fail to give similar guarantees.
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