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ABSTRACT
A simple reason for backend systems in mobile applications
is the centralized management of state. Mobile clients syn-
chronize local states with the backend in order to maintain
an up-to-date view of the application state. As not all mo-
bile social applications require strong consistency guaran-
tees, we survey an alternative approach using special data
structures for the mobile applications. These data structures
only provide eventual consistency, but allow for conflict-free
replication between peers. Our analysis collects the require-
ments of social mobile applications for being suitable for this
approach. Based on exemplary mobile social applications,
we also point out the benefits of serverless architecture or
architectures with a thin backend layer.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: [Online In-
formation Services]; C.2.4 [Computer-Communication
Networks]: [Distributed Systems]

Keywords
Commutative Replicated Data Types, Mobile Systems; So-
cial Applications; Replication

1. INTRODUCTION
The initial success of social applications in the early years

of the 21st century has been primarily fuelled by then novel
web technologies. The web had already become dynamic
due to server-side programming, but emerging technologies
such as AJAX suddenly enabled more interactive applica-
tions and finally a user experience similar to traditional desk-
top applications. As a result, new types of web applications
appeared that were mainly focused on content generated by
its users. The usage of these social web applications is in-
herently connected to the concept of being online: Every in-
teraction between users directly takes place on the website.
As the social web applications stores and manages all the
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data generated by their users, also asynchronous interaction
is possible, mediated by the application. With the advent of
prevalent mobile computing, social applications have been
incorporating new concepts such as location-based services
and adapting to content generated and consumed by mobile
users. Two new paradigms emerged that focused on the in-
creasing dominance of mobile users: Mobile first postulated
the idea that new applications should be designed first of
all for mobile usage, and web-based access often degraded
to an afterthought. In order to temporarily cope with weak
network coverage and availability problems, offline first be-
came another design principle. Instead of taking network
connectivity for granted, applications are now designed to
handle a disconnected state as default.

All of these social applications still share a common per-
ception: Whether the user interacts in a Desktop webbrowser,
in a mobile browser or with a native mobile app—the actual
application eventually resides on a dedicated backend archi-
tecture in most cases. This has a number of benefits, includ-
ing service-aware content dissemination, consistent manage-
ment of application state and the advantages of a centralized
service for their providers. On the other hand, a centralized
backend also several drawbacks. It represents a single point
of failure, hinders resilience and robustness, and constitutes
a threat of directed editorial control. Furthermore, a cen-
tralized application architecture cannot directly leverage the
locality of its users.

While the idea of distributed, peer-to-peer-based mobile
applications is far from new, our main contribution is the
analysis of a certain set of data structures that inherently
manage central issues thereof: conflict resolution and consis-
tency during replication. After a short illustration of these
data structure in Section 2, we want to focus specifically
on their specific potential and applicability for mobile social
applications. In Section 3 we point out the characteristics
necessary for such applications in order to be compatible
with the constraints of the data structures. In the subse-
quent sections we discuss CRDT-enabled applications with-
out any servers (Section 4) or with very thin backends (Sec-
tion 5). Finally, we touch on our future work and conclude
our contribution in Section 6.

2. BACKGROUND
Conflict-Free Replicated Data Types (CRDT) are distri-

butable data types that avoid conflicts during replication
processes by adhering to a set of mathematical properties,
namely commutativity, associativity and idempotence.



2.1 Conflict-Free Replicated Data Types
The literature distinguishes between two basic approaches

of CRDTs: state-based and operation-based. This results in
two different types of CRDTs [20] that we briefly explain.

2.1.1 CvRDTs
The first type form State-based Convergent Replicated

Data Types (CvRDT). A semilattice is used as payload for
the data type, therefore all operations of the type must be
associative, commutative and idempotent. Additionally, in-
stances of the data type are restricted to grow monotonically.
For each CvRDT a merge function is defined that can merge
two or more instances of the data type. Updates are usually
first performed locally (source) and sent to a random other
replica later, where it will be merged with the state of that
replica using the merge function (see figure 1). If this step
is repeated indefinitely often, every replica will evenutally
converge towards the same state [21, 22].
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Figure 1: State-based replication (based on [21]).

2.1.2 CmRDTs
The second type are Operation-based Commutative Repli-

cated Data Types (CmRDT). They require all their opera-
tions to be either commutative or to have their causal order
captured inside the data type. Updates are first performed
locally (source) and then sent to all other replicas (down-
stream, see figure 2). Therefore, a causally ordered, reliable
broadcast (or multicast) must be implemented. Concurrent
updates are only allowed for commutative operations [22].
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Figure 2: Operation-based replication (based on [21]).

2.1.3 Comparison
CvRDTs are usually easier to implement, because all in-

formation is carried by the state and they do not require
additional mechanisms for replication. Furthermore, they
have less requirements regarding the underlying communica-
tion channel. Using pairwise communication, an unknown,
potentially indefinite number of replicas can be managed.
Additionally, multiple updates can be combined to a single
replication step. On the downside, because the whole state is
being sent at each update, replication may be very inefficient
regarding bandwidth. Building complex data types that

satisfy the requirements of CvRDTs can further be costly.
CvRDTs were initially designed for objects that only have
assignments as operations (register-like objects). Currently
they are mainly used in file systems (e.g. NFS, AFS and
Coda) and key-value stores (e.g. Dynamo [6] and Riak [12]),
as stated by Shapiro et al. [21, 22].

For CmRDTs, the operations must be transmitted along-
side their causal order for replication. They require a causally
ordered, reliable broadcast channel, which is not easily guar-
anteed. CmRDTs allow complex operations and therefore
have higher expressive strength. They only transmit data
about operations and their order, being more efficient re-
garding bandwidth and allowing larger states. Main use
cases are databases (e.g. Swarm [9]) and cooperative sys-
tems (e.g. Bayou [16] and IceCube [18]) [21, 22].

Note, that both types are equivalent in the sense that they
can be emulated by each other, as demonstrated by Shapiro
et al. in their report [21].

2.2 Implementations of CRDTs
The properties of commutativity, associativity and idem-

potence make the design of CRDTs a non-trivial undertak-
ing. Hence, the number of data structures that have been
formalized and implemented is still very limited.

There exist a number of theoretical CRDT specifications
for different data types. For some of them, there are also im-
plementations, such as components of open source projects.
Table 1 provides an overview of basic CRDTs and known im-
plementations. Apart from basic primitives, there are also
more specific CRDTs for certain use cases, that have been
published. A list of more specific CRDTs is shown in Ta-
ble 2.

3. CRDTS FOR MOBILE SOCIAL APPLI-
CATIONS

Next, we want to apply the idea of CRDTs to the context
of mobile social applications. This requires an analysis of
the constraints of CRDTs and corresponding requirements
of mobile social applications

3.1 Using CvRDTs for Mobile Applications
CmRDTs require a reliable broadcast, which is almost

impossible to implement for distributed mobile applications
with loose coupling. CvRDTs are less demanding towards
the transmission channel, as the communication between
replicas happens pairwise. This enables the support of peer-
to-peer and ad-hoc networks. Therefore, we choose to use
CvRDTs over CmRDTs in mobile applications. The fol-
lowing criteria should be considered when deciding whether
a mobile (social) application is suitable for the usage of
CvRDTs:

• Mutability of data

• Suitable CRDT representations of the used data types

• Size and growth of data

• Eventual Consistency as sufficient consistency model

• Time that nodes can be disconnected from the network

• Number of nodes that share the same data



Data Type CRDT Specifications Known Implementations
Integer Vectors Increment-only Integer Vector [22]
Counters G-Counter, PN-Counter [21] Riak 2.0 [1], Eventuate [19]
Registers LWW-Register [11], MV-Register [21] Riak 2.0 [1], Eventuate [19]
Sets LWW-Element-Set, PN-Set, OR-Set [21], U-Set [21, 24] Riak 2.0 [1], Eventuate [19]
Maps Dictionary [24], Map [21] Riak 2.0 [1]
Graphs 2P2P-Graph, Add-Remove Partial Order [21]

Table 1: A list of basic CRDTs and known implementations.

Use Case Underlying CRDTs Structure Known Implementations
Dynamic Vector Clocks Increment-only integer vector [22]
Collaborative writing Add-Remove Partial Order [21] Logoot [23], Treedoc [17],

WOOT [15], LSEQ [14]
Logs U-Set [22, 24]
Time-series Event Storage LWW-Element-Set [21] Roshi [4]
Shopping Carts OR-Set [21]
Location Data Combination of 2P-Set, LWW-element-Set & OR-Set [10] NavCloud (TomTom) [10]
Betting Data OR-Set [13] bet365 [13, 3]
Gameplay statistics Sets of Counters [7] League of Legends [2, 7, 3]

Table 2: Subset of use-case specific CRDTs and known implementations thereof.

3.1.1 Mutability of Data
The replicated data should be mutable, i.e. the applica-

tion does not replicate read-only or write-once data. In those
cases, the conflict-freedom of CRDTs does not provide any
benefit, while using CRDTs over conventional append-only
replication introduces an overhead.

3.1.2 Suitable CRDT Representations
The data the application is replicating must be mapped to

a suitable CRDT (or more specifically: CvRDT). To check if
this is the case, the data types can be compared to existing
CvRDT representations (e.g. Counter or Set, see Section
2). If no suitable CvRDTs are defined, one can try to define
their own CvRDT as described in Section 2. When defining
a CvRDT, it is important to fulfill the following mathemat-
ical requirements:

• Commutativity : All operations of the data type are
commutative, i.e. their order does not change the re-
sult.

• Associativity : All operations of the data type can be
grouped arbitrarily without changing the result.

• Idempotence: All operations are repeatable without
changing the result, therefore every single operation
instance has to be uniquely identified (e.g. using a
vector clock).

To meet these requirements, one will often have to re-
structure the inner representation of the data type and hide
it behind its actual value.

3.1.3 Size and Growth of Data
The payload that is transmitted over a mobile network

should be as small as possible. Using CvRDTs, the payload
represents always the whole state of the data type avail-
able on that peer. Therefore, it is not recommended to use
CvRDTs when large or indefinitely growing data is repli-
cated in an application. However, application-specific mech-
anisms can be used to locally purge or restrict the amount

of state maintained by a peer, when the loss of older infor-
mation can be tolerated by the application.

3.1.4 Eventual Consistency
The consistency model of eventual consistency must be

sufficient for the application, since CRDTs are based on
this model. This means that the semantics of the appli-
cation should be able to tolerate outdated data, i.e. incom-
plete data should not be regarded as wrong data. Rather,
performing additional replications should either increase the
quality or the up-to-dateness in terms of the application do-
main and context.

3.1.5 Lower and Upper Bounds of Connectivity
Associated to eventual consistency, the time that nodes

can be disconnected from the network without violating the
semantics of the application should be as flexible as possible.
This means that both immediate replication as well as long
network partitionings should be tolerated, depending on the
actual application requirements.

3.1.6 Number of Mobile Nodes
The number of nodes (i.e. mobile devices) in the applica-

tion that share the same data should not be too high, when
a low upper bound for connectivity is desired. Otherwise
the time necessary for updates to disseminate to all devices
may be very long and a skew in local consistency become
more apparent. However, when eventual consistency is fully
supported, high inconsistencies between single nodes are not
problematic which enables the support of a large number of
nodes. Note that a number of nodes can represent their own
replication domain, while others still use the same applica-
tion, but with independent application state.

4. BACKENDLESS MOBILE APPLICATIONS
Backendless mobile applications are applications that op-

erate without any backend. We limit our considerations to
applications that share a (at least partially) globally shared



state and therefore require communication in order to repli-
cate data between peers.

4.1 Replication and Consistency in Backend-
less Mobile Applications

For backendless mobile applications eventual consistency
is a mandatory requirement. It is possible that within sub-
groups of devices data is consistent while the groups have
high inconsistencies between each other if the number of de-
vices per group is rather low and communications happens
frequently, while communication between devices of the dif-
ferent groups happens infrequently. This may be due to ge-
ographic separation and the limitation to local replication.
Note that a single device from one group communicating
with one of the devices from another group is sufficient to
cause (eventual) consistency between the groups. A single
device will never be able to assess the global state or the
quota of updates it has received in relation to the total num-
ber of updates in the application. Therefore no statements
can be made about the actual consistency.

4.2 Ad-hoc Communication in Backendless Mo-
bile Applications

Since generally no information about other devices are
available, ad-hoc communication is used for replication. Ad-
hoc protocols of mobile devices, such as Wi-Fi Peer-to-Peer [8],
Bluetooth Low Energy (BLE)1 or NFC2, can be used to
transmit data. A mechanism to discover available peers us-
ing the same application has to be implemented. For in-
stance, the Wi-Fi Peer-to-Peer framework offers such a dis-
covery inherently [8].

4.3 User Management in Backendless Mobile
Applications

Devices have to be distinguished in order to identify changes
of different peers (and therefore support vector clocks). A
naive approach would be to use device identifiers like the
NSUUID Identifier For Vendor for iOS3 devices or the Android-
ID4 for Android devices. Problems arise because these iden-
tifiers are not guaranteed to be unique since they can be
changed by the device user and the same user using multi-
ple devices cannot be identified as well.

Assigning unique identifiers in mobile networks is a com-
mon problem. Usual solutions use a hash of the device’s
IP address as public key [5]. However, this solution can
only guarantee the key to be unique within a single session.
Furthermore, without a trusted and centralized instance to
manage user accounts this solution still does not provide a
way to authenticate the user (e.g. when mapping the key to
a username). A more advanced solution is the generation of
public-private key pairs on each device and the exchange of
public keys on first contact. This may require authentica-
tion using near field technologies like NFC or the usage of
QR codes5. If the user is allowed to use multiple devices,
the private key has to be duplicated in a similar way. Every

1http://www.bluetooth.com/Pages/
low-energy-tech-info.aspx
2http://nfc-forum.org/what-is-nfc/
3https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIDevice_Class/
4http://developer.android.com/reference/android/
provider/Settings.Secure.html#ANDROID_ID
5http://www.qrcode.com/en/

device then has its own list of trusted users it can commu-
nicate with. The keys could also be used for other security
mechanisms. However, unique usernames are impossible to
enforce, as the system design does not provide a global view
on the common shared state.

4.4 Example: An Anonymous Sharing App
As example application for a backendless mobile applica-

tion, we choose a geosocial, anonymous sharing application
(e.g. Yik Yak6 or Jodel7). This application allows users
to anonymously post short, location-based messages that
nearby user can comment on and vote on. This type of
application is convenient since data is mutable (votes, set
of posts/comments) and only basic data types are used (a
counter for votes and a set each for posts and comments),
which there already exist CRDT specifications for (see table
1). Furthermore, posts, comments and votes are relatively
small in terms of data size and meta-data. Eventual Consis-
tency is fully supported as the semantics of the application
includes only local updates per definition. A single device
can also be disconnected from the network for an arbitrary
amount of time without violating this semantics. By purg-
ing older entries and only maintaining the latest N posts,
the growth of application state can be restricted. Such an
mechanism fosters inconsistencies of old data, but this is
acceptable due to the application’s ephemeral semantics.

5. MOBILE APPLICATIONS WITH THIN
BACKENDS

As an alternative to the strict notion of backendless appli-
cations with CRDTs, we suggest another architecture that
applies CRDTs for data replication between peers, but still
employs a centralized backend for certain tasks.

This in-between approach seems unprofitable at first, as
it introduces drawbacks of both concepts. However, a strict
separation of concerns makes this approach very efficient:
While the dissemination of application state between peers
is governed by CRDTs using direct peer-to-peer replication,
the backend provides orthogonal features that are hard to
distribute. This includes application features such as ac-
count creation, user management, discovery/bootstrapping,
or the management of meta-data on data consistency (note
that the actual application state is still not part of the back-
end). Furthermore, a thin backend can take on the task of
trusted third party that provides a key infrastructure for all
peers.

5.1 Replication and Consistency in Mobile Ap-
plications with Thin Backends

When the mobile application leverages a thin backend,
data about the number of devices sharing (and therefore
replicating) the same data and the respective number of up-
dates they have received and/or made can be stored globally.
This way, devices could check their quota of updates in re-
lation to the total number and initiate steps to counteract
high inconsistencies if it is under a certain threshold. It is
also possible to have the backend initiate this check and co-
ordinate replication accordingly. Additionally, devices could
sign in at the service on startup of the application to make
their public IPs available through the network. This enables

6https://www.yikyak.com/
7https://jodel-app.com/
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global replication, since devices can obtain the IP of every
single device in the network. It is also possible to identify
groups of devices and only choose one representative instead
of storing all IPs. Using these mechanisms, a higher level of
(still eventual) consistency can hence be achieved.

5.2 Peer-to-Peer Communication in Mobile Ap-
plications with Thin Backends

For communication, the same mechanisms as for Back-
endless Mobile Applications can be used (see section 4.2).
Additionally, communication via the Internet can be used
when exchanging IPs as described in the previous section.

5.3 User Management in Mobile Applications
with Thin Backends

The backend can be used to store user accounts and handle
authentication. This way, the identity of a communication
partner can be verified by the backend before replication.
Additionally, the same account can be used on multiple de-
vices and usernames can be guaranteed to be unique.

5.4 Example: A Campus Voting App
As example application for a mobile application using a

thin backend we choose a voting application, where users
can vote on different topics but it is important to verify
that the user is authorized to vote on a topic and to ensure
that every authorized user only has a restricted number of
votes. The actual votes should be anonymous, i.e. not be
visible to other users. This type of application is convenient
because data (topics and their respective votes) are muta-
ble. The data types can easily be represented as CRDT (set
for the different options and a counter for the votes each).
Replicated data size is relatively small as only votes have
to be replicated once the topics are set up. Also, data is
limited in size by the number of topics and users, as every
user can only vote once. Eventual Consistency is sufficient
as consistency model since every vote makes the result more
accurate, missing votes are considered as temporary result
(as if the user has not yet voted). Furthermore, devices can
be disconnected from the network for an arbitrary amount
of time without violating the semantics of the application.
The number of nodes that share the same data is limited to
the number of users that are authorized to vote on a topic.
To ensure users only vote once, for each topic the backend
creates tokens with a private key and transmits one token
to each device of a user that is authorized to vote for that
topic. User rights are stored at the backend. Tokens can
then be verified on each device (at each replication step)
by using the respective public key, initially provided by the
backend.

6. FUTURE WORK & CONCLUSION
So far, we have implemented several prototypical Android-

based applications. They apply CRDTs for maintaining ap-
plication state and rely on the Wi-Fi peer-to-peer API of
Androird 4.0. In the next step, we plan to synthesize our ex-
periences and extract a generic framework for CRDT-based
application state handling. By modularizing and packag-
ing the replication logic, we hope to make the concept of
CRDTs more accessible for Android developers in general.
The framework is currently designed to provide a set of ba-
sic types and a modular component for peer discovery and
data communication (e.g. Wi-Fi peer-to-peer).

Apart from the framework, we also want to address more
general problems of CRDTs when used in mobile systems—
security and privacy. As part of a distributed backend or
database application, CRDTs are mainly used in closed sys-
tem with a limited scope. For mobile applications, the con-
text is very different, as replication may happen in a non-
trusted environment or with peers with with potentially ma-
licious intents.

Due to the peer-to-peer nature of such systems, privacy re-
quires special attention. A replication might unintentionally
leak data or the timing and order of replications may yield
information specific to the usage context. CRDTs generally
provide a way of data distribution or modification that is
exploitable by malicious peers. Attack vectors include, but
are not limited to, denial of service attacks, spam flooding,
or the injection of counterfeit operations. Therefore, trust
management represents another important issue for the us-
age of CRDTs in an open environment without any backend
system. We believe it is important to survey existing cryp-
tographic mechanisms and privacy-preserving technologies
and assess their applicability either on top of the existing
data structures, or as an integrated part thereof.

The properties of CRDTs yield a number of distinct re-
strictions for mobile applications, such as relaxed consis-
tency, assessable data growth, and limited operations. As
long as application logics can cope with these restrictions,
we believe that the usage of CRDTs is an interesting ap-
proach for mobile applications that refrain from a central-
ized backend and embrace an offline-first design. Due to the
fact that a couple of social mobile applications do not re-
quire strict consistency guarantees, we argue that CRDTs
are especially well suited for them. CRDTs then allow a
mobile application architecture that requires either a thin
backend or that operate even without any backend. Thanks
to the properties of CRDTs, the mobile application devel-
opers do not have to consider state conflicts or resolutions
and can immediately focus on the actual application logic of
their system.
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