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Abstract
In this paper, we propose a new Blockchain-based mes-
sage and revocation accountability system called Blackchain.
Combining a distributed ledger existing mechanisms for
security in V2X communication systems, we design a dis-
tributed event data recorder (EDR) that satisfies traditional
accountability requirements by providing a compressed global
state. Unlike previous approaches, our distributed ledger so-
lution provides an accountable revocation mechanism with-
out requiring trust in a single misbehavior authority, instead
allowing a collaborative and transparent decision making
process through Blackchain. This makes Blackchain an at-
tractive alternative to existing solutions for revocation in a
Security Credential Management System (SCMS), which suf-
fer from the traditional disadvantages of PKIs, notably incud-
ing centralized trust. Our proposal becomes scalable through
the use of hierarchical consensus: individual vehicles dynam-
ically create clusters, which then provide their consensus
decisions as input for road-side units (RSUs), which in turn
publish their results to misbehavior authorities. This author-
ity, which is traditionally a single entity in the SCMS, re-
sponsible for the integrity of the entire V2X network, is now
a set of authorities that transparantly perform a revocation,
whose result is then published in a global Blackchain state.
This state can be used to prevent the issuance of certificates
to previously malicious users, and also prevents the author-
ity from misbehaving through the transparency implied by
a global system state.
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1 Introduction
An event data recorder (EDR), the car equivalent of a flight
recorder, can be used for a multitude of applications, e.g.,
forensic accident reconstruction [4, 8] and misbehavior de-
tection [10]. EDRs are difficult to implement for V2X as they
require complex append-only semantics, and they should
provide at least tamper-evidence. These circumstances, miss-
ing data de-duplication and a lack of research lead to expen-
sive components, which encumbers adoption in real-world
scenarios.
To tackle these problems, this paper examines the use

of distributed ledgers (DL) for this application. Distributed
ledgers are distributed data storages, which provide an append-
only semantic to the participants. This allows us to em-
ploy known techniques of data de-duplication and tamper-
proofing the data.n at Middleware. Students attending work-
shops/tutorials or who are not presenting papers are encour-
aged to apply. Student presenters with funding available
fro The most well known implementation of a distributed
ledger, Bitcoin [7], provides the consensus, and therefore
tamper-proofing, by restricting the rate of data write through
a proof-of-work mechanism. However, a naive adoption of
this ledger is not suitable for our scenario, because it does not
scale to the message frequency encountered by an in-vehicle
EDR.
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Therefore we propose a public permissioned based on a hi-
erarchical byzantine fault tolerant consensus. On the lowest
layer, cars form clusters and agree on a state change which is
propagated to a road side unit (RSU). As there are too many
RSUs deployed to reach a global consensus efficiently, smaller
RSU groups form and aggregate a partial state. The fixed set
of transaction issuers allow for a weighted consensus and
efficient, distributed mining process.
In recent years, with concrete implementation plans for

V2X communication systems, researchers have started to
look more closely at the design of a real-world public key
infrastructure (PKI) and the multitude of requirements in
such a system. Most recent designs, such as that proposed by
Whyte et al. [11], include amisbehavior authority, in addition
to a standard certificate revocation component as in regular
PKIs. This authority is responsible for accepting misbehavior
reports, processing them according to some fixed algorithm,
and revoking any vehicles that show malicious behavior. In
the real world, it is likely that not just one, but several of
such SCMSs will be deployed by competing entities (either
vehicle manufacturers or countries [8]. To make this process
more transparent, and to reduce the trust necessary in any
one SCMS, we propose the use of a distributed ledger for
accountability. This will not only include accountability of
vehicles towards the system, but also the accountability of
the MAs amongst each other, and towards the users of the
system (i.e., the vehicle owners). There is a lot of work on
how to locally revoke malicious vehicles [1, 5], but transfer-
ring this consensus to a global system is an as-yet unsolved
challenge, despite various proposals in the literature. In par-
ticular, it is challenging to make the consensus verifiable
without additional trust requirements from the users.

In the remainder of this paper, we introduce the concep-
tual foundations of our proposal. Specifically, we describe a
detailed system model, including privacy and attacker mod-
els, in Section 2. Section 3 then describes our Blackchain
proposal and some possible attacks on our base system. We
finally discuss the implications of these ideas for distributed
ledgers and misbehavior detection research in Section 4.

2 System and Attacker Model
Vehicular ad-hoc networks (VANETs) consist of vehicles and
road-side units (RSUs), equipped with wireless communica-
tion modules. Unlike traditional wireless networks, VANETs
are primarily based on broadcast communication: vehicles pe-
riodically broadcast beacons, containing application-relevant
information such as position, speed, heading, and somemeta-
data. Applications of VANETs vary from crash avoidance to
finding fastest routes and fuel and road efficiency applica-
tions, which can potentially be combined with self-driving
vehicles to further increase performance. Communication
typically uses the IEEE 802.11 standard, with a range be-
tween 300 and 1000 meters; many authors propose more

advanced communication patterns on top of this. RSUs are
typically assumed to be available in some locations only (e.g.,
attached to traffic lights), but provide an intermittent link
to the Internet for all vehicles. Some research suggests that
the current work in 5G cellular communication may provide
more permanent Internet connectivity, although this may
be costly for users; a heterogeneous network using both
technologies is a current hot topic in this community [9].
For this paper, we focus on the case of clustering, where
vehicles communicate with others in communication range
directly, but a cluster head (CH) is responsible for commu-
nication with other clusters. For an overview of clustering
techniques, we refer interested readers to a recent survey by
Cooper et al. [3].
In VANETs, security plays an important role, due to the

lives dependent on the communication. Unlike existing IT
infrastructures, the main focus of security lies on integrity
and availability, rather than confidentiality; it is generally
assumed that the message contents are not encrypted, since
any vehicle needs access to this content for any VANET appli-
cation to provide any real benefit. Message integrity is gener-
ally protected through signed messages, where each vehicle
possesses a number of authentic public keys from a vehicular
public key infrastructure (VPKI). One of the proposed stan-
dards to organize such a VPKI, proposed byWhyte et al. [11],
is the security credential management system (SCMS), which
proposes a number of authorities to protect the privacy of
the users. Issuing pseudonyms involves the following author-
ities: the enrollment certificate authority (ECA), responsible
for long-term identities of vehicles, the registration authority
(RA), who essentially checks whether a vehicle may still re-
ceive pseudonyms, and the pseudonym certificate authority
(PCA), which issues pseudonyms. When vehicles report mis-
behavior, this report mainly concerns specific vehicles (and
ideally includes evidence, see e.g. [2]). As evidence suspicious
messages can be used, for example. A sample misbehavior
report can be found in Figure 1. The trust statement mirrors
the solution of the local misbehavior detection system. Be-
sides information of the suspects a report could store the
detected misbehavior, the pseudonym identifier of the re-
porter and the associated cluster identifier. This information
is processed by the misbehavior authority (MA), which can
decide on the validity of these reports and subsequently re-
voke pseudonyms and long term identities in cooperation
with the PCA and one or more linkage authority (LA). This
protocol also informs the RA not to issue any more certifi-
cates for the reported vehicle.

It is important that the MA only revokes reliable vehicles,
which requires that the MA is able to validate the reports
of vehicles (i.e., objectively check the evidence) and detect
when an attack against the revocation system itself is on-
going. Attacks on the revocation system include those that
exist for traditional reputation systems (e.g., bad-mouthing
attacks, where an attacker creates false accusations), often
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Figure 1. Sample structure of a misbehaviour Report

combined with Sybil attacks (where an attacker uses multiple
pseudonyms to artificially increase the evidence for their
claim). In our proposed system model, we allow the attacker
to use at most two pseudonyms at any time, in order to
limit the Sybil attack capabilities within a cluster. This can
be achieved in real-world system by limiting the validity of
certificates appropriately (as discussed in EU proposals [6]),
increasing the overhead, but providing tighter control with
limited privacy loss.

3 Blackchain
We propose Blackchain (Blackbox Blockchain), with which
we aim to provide cluster-based VANETs with an integrated
accountability system that exploits clusters to create a dis-
tributed ledger for exchanged messages. Since these mes-
sages relate to real-world observations and processes, there
are objective ways to establish which of these messages are
correct (i.e., corresponding to the real world), and which
contain false data. Detecting malicious actors this way is
referred to as misbehavior detection: for a survey of differ-
ent mechanisms that can be used for this purpose, we refer
interested readers to our recent survey on this topic [10].
This objective truth can also be used to detect attackers at a
central location, such as the MA discussed in the previous
section. In this paper, we propose that the Blackchain can be
used to perform this centralized misbehavior detection and
revocation without requiring trust in any individual trusted
third party (TTP). The concept is shown in Figure 2: different
countries will likely run their own SCMS, and a protocol is
needed to perform cross-border revocation. Our proposal not
only enables this functionality, but also makes each SCMS
accountable towards the participating vehicles.

Each vehicle accumulates information about it’s own state
and, through received messages, about other vehicles in the
vicinity. Unlike the classical approach to store these state
changes in an EDR, with the overhead of a trusted platform
to ensure the append-only property, we persist these changes
in a DL. A direct approach to this would be to require each
vehicle to participate in the Blackchain directly as a net-
work node, but without participating in the mining process.
Having observations from different nearby neighbours in

the Blackchain, malicious behaviour can easily be detected
through misbehavior detection. By propagating the resulting
blocks to theMAs, who also participate in the Blackchain net-
work, a consensus decision can then be made to revoke the
corresponding vehicle, which can be stored in the Blackchain
along with the associated evidence, persisting all the relevant
information automatically. This results in a public, permis-
sioned blockchain, where all MAs mine blocks by reaching
consensus about misbehavior detection decisions. Although
the decision making process is restricted to MAs, the public
nature of the Blackchain allows all participants to verify the
correctness of these decisions. Most importantly, the append-
only property is guaranteed globally instead of trusting the
individual blackboxes in each vehicle.

Unfortunately this approach is not viable in the presence
of millions of vehicles and update frequencies of 10 Hz for
each vehicle. Therefore, we reduce the amount of state up-
dates and increase the number of verifying nodes. The first is
achieved by clustering vehicles together which all agree on
a reduced common state (using a local revocation protocol,
such as OREN [1]). The cluster state reduces the size and fre-
quency of updates from vehicles but still allows other parties
to verify the correct behaviour of the cluster participants.
The second adaptation is to use the RSUs, which also observe
messages, to participate in the network as verification nodes.
All RSUs have known identities, which can be used to run a
byzantine fault tolerance (BFT) consensus. A BFT consensus
over all RSUs will still result in a poor performance, due
to the latencies and the sheer number of RSUs that may be
deployed in the future. We thus again apply clustering to
reduce the amount of nodes and increase performance. This
can be done by grouping RSUs by area or manufacturer, e.g.,
all RSUs in one city, to form a cluster and agree on a common
state, and thus a set of maliciously behaving clients.

4 Conclusion
In this paper, we have provided some conceptual foundations
for Blackchain, a distributed ledger that provides account-
ability for misbehavior authorities and vehicles alike. The
purpose of Blackchain is to reduce the trust requirements on
users of a vehicular communication system, improving the
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Figure 2. Blackchain’s underlying system architecture.

performance of global revocation algorithms by employing
hierarchical consensus, and creating accountability for mis-
behavior authorities. However, these foundations are only
the first step in this area of research: there are many open
questions that still need to be solved to make this system
practically feasible. From the vehicular perspective, the most
important factor is whether clusters are stable enough to pro-
vide the necessary consensus algorithms. From a distributed
ledger perspective, the most exciting question is what guar-
antees hierarchical consensus can provide compared to a full
consensus where all RSUs and MAs (and even potentially all
vehicles) participate. Although Blackchain itself may not be
feasible to implement, we think our proposal gives interest-
ing directions of research for both fields, which are valuable
beyond the actual implementation of Blackchain.
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